
AD-AI02 182 STANFORD UNIV CA DEPT OF STATISTICS F/B 12/1

LARGE DEVIATIONS FOR BOUNDARY CROSSING PROBABILITIES.(U)
MAY 81 D SIEGMUND N00014-77-C-0306

UNCLASSIFIED TR-15 NL

Al-I2f 
l2f .IfIII



-4 LARGE DEVIATIONS FOR BOUNDARY CROSSING PROBABILITIES

BY

D. SIEGMUND

TECHNICAL REPORT NO. 15

MAY 15, 1981

PREPARED UNDER CONTRACT

N00014-77-C-0306 (NR-042-373)

FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

D

~U44



LARGE DEVIATIONS FOR BOUNDARY CROSSING PROBABILITIES

BY

D. SIEGMUND

TECHNICAL REPORT NO. 15

MAY 15, 1981

Accession For PREPARED UNDER CONTRACT

NTIS GRA&I N00014-77-C-0306 (NR-042-373)
DTIC TAB El FOR THE OFFICE OF NAVAL RESEARCH
Unannounced E]
Justification

By
Distribution/

Availability Codes
Avail and/or

Dist Special DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

Also issued as Technical Report No. 168 under National Science Foundation
Grant MCS 80-24649, Department of Statistics, Stanford University.

DISTRIBUTION STATEMENT- A
,pptovod foT public roleose

AW..



ABSTRACT

For random walks s , n-1,2,... whose distribution can be imbeddedn

in an exponential family, a method is described for determining the

asymptotic behavior as m of

P(s n > m c(n/m) for some n < m I s. M m p 0 (Po < c())

Applications are given to the distribution of the Smirnov statistic

and to modified repeated significance tests.

AMS 1970 Subject Classification. Primary 60F05, 60J 15. Secondary 62L IO.

Key Words and Phrases. First passage distribution, stopping rule, large

deviation, sequential test.
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Large Deviations for Boundary Crossing Probabilities

1. Introduction.

Let x1,X2,... be independent, identically distributed random

variables and s n xI + ... + x . Given a positive function c(t),sn x n

t > 0, and m > 0 , define the first passage time

(l) T - T m infjn: s m c(n/n)}
m n

The purpose of this paper is to describe a method for studying the

asymptotic behavior of the conditional probabilities

(2) P{T < m I sm M m Uo} (V° < c())

which under conventional assumptions on the function c(-) and the

distribution if x I converge to 0 exponentially fast as m - - .

A number of methods have been developed for approximating the

unconditional probabilities P(T < m) under various conditions

on c(O) and the distribution of x1 , cf. Borovkov (1962, 1964),

Daniels (1974), Ferebee (1981), Jennen and Lerche (1981), Lai and

Siegmund (1977), Lalley (1980), Siegmund (1978), and Woodroofe

(1976 b, 1978). Some of these methods seem adaptable to an invest-

igation of the conditional probabilities (2). In principle, knowledge

about the conditional probabilities (2) can be translated into know-

ledge about P{T < m} by integrating out v , although a rigorous

justification of this approach leads to questions of uniformity

in u which may involve additional technical difficulties.

This paper gives a new technique for studying (2). Although the

problems of approximating P(T < m) and P(T < m I sm - m v 0o } differ

in important respects, there seems to be enough similarity to warrant

an informal comparison of the method introduced here with the techniques

of the papers mentioned above. The method of this paper permits a



fairly broad class of functions c(.) and has the aesthetically

pleasing feature of making a minimal distinction between random walk

and Brownian motion. In contrast, the methods of Borovkov and Woodroofe

are directly applicable only to random walk; those of Daniels, of

Ferebee, and of Jennen and Lerche apply to an extremely broad class

of functions c(.) but seem limited to the intrinsically simpler

case of Brownian motion. The Lai-Siegmund method is general with

regard to processes but limited with regard to functions c(*)

Like the methods of Woodroofe, Lai-Siegtmund, and Lalleythe method

described below seems to adapt readily to certain multidimensional

problems, although no results in this direction have been developed

in detail. For linear c(-) it is particularly simple. In a very

special case it was used by Siegmund and Yuh (1981) to give an easy

derivation of Anderson's (1960) results for Brownian motion. In addi-

tion to these technical aspects, the method provides a different

perspective towards boundary crossing problems, which will become

apparent during the development of the paper.

A glance at the literature mentioned above shows that systematic

theory for problems of this sort is exceedingly technical. Hence the

following discussion is restricted to two examples which are important

in applications and which seem to indicate the scope of the method. The

case of linear c(o) receives a reasonably general and rigorous treat-

ment in Section 2. As an application one obtains the large deviation

probabilities of the Smirnov statistic, which are shown numerically

to provide excellent approximations even for "small deviations".

A simple but illuminating non-linear example is provided by normal

random walk and the stopping boundary c(t) - Ot/2. The stopping rule

T is closely related to Armitage's (1975) repeated significance test.

This example is discussed in Section 3, and the results are applied to

give an asymptotic approximation to the error probabilities of a

modification of this test suggested by Peto et.al.(1976) and Siegmund(1978).

2



-!I

2. The linear case

Assume that the distribution F of x1  can be imbedded in an

exponential family, i.e. for all e in some neighborhood of 0

exp[*(6)] =: f exp(Ox)F(dx) is finite, so

exp[Ox - *(O))F(dx) defines a family of probability distributions

indexed by 9 . It is well known (and easy to see) that the mean and

variance of these distributions are respectively *'(e) and "() >O.
Hence u - '(O) is a one to one function of e (unless F is degenerate).

It will be convenient to regard this family of distributions as indexed

by p and write F (dx) - exp[ex- @(9)]F(dx). To emphasize that 9 is

a function of p , the notation 9(p) is occasionally used. Let P

denote the probability according to which xl, x2 ,... are independent

with P {xk E dx} - F (dx) (k - 1,2, ... ).

An additional technical assumption is required to insure that

conditional probabilities are well defined and that local limit theorems

apply. This assumption can be either that F is arithmetic or that it

has a well-behaved density. Only the latter case is explicitly considered

here. An unnecessarily strong but convenient assumption is that for all

P there exists an n such that

(3) f I Ep exp(i x1), dX < •

This implies that the PV distribution of sn has a bounded density

f which obeys a standard local central limit theorem (Feller, 1966,

p.4 8 9). To avoid some uninteresting calculations it is aIso convenient

to assume that the P distribution of x! has a bounded density.

Let Fn - B(x,..., x ) and let P n  denote the restriction

of P to F, so

36'~~~1



(4) dP / dP ; n - f 1,n/f5,n - exp{(0-0)S-n[,(e) - (O)]}

where §- e(). For M-1,2,... and A E F let
K

P(m)(A)- P (Al8m - ME)

and for n < m let P(M) denote the restriction of P() to F
&,n to n

BY sufficiency of P() does not depend on .

The main result of this section is

Theorem I. Let C > 0 and u E (--,C) fl fi} . Define

- infln: sn > mC} and -+ inf{n: sn > 0}. Assume that there

exist V2 < 0 < 01I (necessarily unique) such that

(5) *(e(1 2)) - P(od)

and

(6) C + 14 21 (C- o) .

Let 0e O(ji) and ? - (e

Then as m4

(7) p(m){.< } K(CpO)exp{-m[(6e-0 2) + (
8
2-0O)uO -C(e 2) ++((8O) ]

where

(8) K(C, i) 0IV2I t~2 {+ o51+ 23, -20 2 a itOf-) (CP0) 1/2z Ei T a 2 11 3' (C- 0 )

Remarks.

(M) It is usually routine to verify the existence of l and 2
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and to compute them. For example, if 0(0) and 01(e) both diverge

(continuously) to +- as e approaches the endpoints of its interval
of definition, a simple picture demonstrates the existence of

and p 2 satisfying (5) and (6).

(ii) The quantities P {42T+-} and E T+ must usually be computed

numerically. See Woodroofe (1979) for a Fourier inversion technique to

obtain the ratio P11 {T =}o)/E 1 T+ and for several examples.

(iii) It is not difficult to generalize the Theorem to allow C and

110 to depend on m and converge at suitable rates. The details of

this generalization have been omitted, although the example of the

Smirnov statistic given below uses such a result.

Examples.

(a) Suppose that the P distribution of xI is normal with mean V

and variance I. By symmetry uI W - P2 * and it is easy to see that

Pl W 2. - .O " The proof below shows that this value of pI is

tantamount to the standard reflection principle. Easy algebra and

known random walk theory (Feller, 1966, chapter XVIII ) show that

the right hand side of (7) becomes

[2(2;-u 0) 2 1 exp{-2 I n-lI [-n 2 ( 2 c- ) 1} exp{-2 m ( -p) 0

The final exponential factor in this expression is the well known,

exact probability for the corresponding problem with Brownian motion

instead of random walk. The first two factors account for excess over

the boundary.

(b) If F n(x) denotes the uniform empirical distribution function,

the well known representation of the uniform order statistics in

terms of sums of independent exponential random variables (e.g.

Breiman, 1968, p.285) shows that

5



P! sup (X-Fx)) } - Pf max (W.-j) > n- Wn+ I -(n+1) - 1}o~x'1 l<'<n J - n+

where W. - y +..+ y .and are independent standard ex-

ponential. This is almost in the form required by Theorem I with m-n+1

and sk - Wk - k, except that mC has been replaced by (m-l)r-1
and Po a - I/m depends on m . Minor changes in the calculation which

yields Theorem I give as n -

(9) P1 sup (x-Fn(x)) > exp-n[(eI 02)c + + logo e2)D

o<x<l W e 21 - 1( 1- 62 ) [ 1 + (10218 1)3(1-01)(1-e2

where e2 < O < e 1  satisfy 1 - 02 - log[(1-0 2 )/(1-8 1)] and

I + 1e21-1 - -1 . Bahadur (1971, p.15) has determined the exponent

on the right hand side of (9). It is not immediately obvious that his

answer is the same as that given here, but a simple calculation shows

that the two agree.

The exact distribution of sup(x-F (x)) is known (Birnbaum and
x

Tingey, 1951), although it is inconvenient for numerical calculation

when n is large. For small values of n

Table I compares some exact probabilities with approximations obtained

from (9). The classical Smirnov approximation, exp(-2n 2 ), is also

included. One can easily see that (9) provides a very good approxima-

tion even for small , for which the probability in (9) is not close

to 0

6
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Table i.

Exact and Approximate Tail Probabilities for the Smirnov Statistic.

In each cell the first entry is the exact probability. The second

and third are approximations given by (9) and by e-2n C2 respectively.

n

4 = .04395 .2555 .5652

P - .950 .500 .050

.957 .510 .049

.985 .593 .078

9 - .03730 .1804 .4796

P - .950 .500 .010

.952 .499 .010

.975 .557 .016

Proof of Theorem 1.

To motivate the method of proof it is helpful to consider first

the case of normal random walk, i.e. f ,(x) - n- 12P[(x-ni)/n I/2

where cp(x) - (27) - l/2 exp(-x 2/2). Recall that p(m) denotes thejjtn
restriction of p(m) to the a-algebra F B(x ...,x ) (n < i).

1~I

Let y 0 < C and let p- = 2C -u 0 be the "reflection" of vo about .

By direct calculation one sees that for n < m

dP( mn) /dP(m) n exp{- 2 mc(4- j ) - 2(C-jo )(s n-m)/(l-n/m),

7



and hence

(10) P(I) T<m} exp{-2mi(C-P)} f exp{-2(C-u )(s -M C)/(I-T/m)}dP(m)
{T<m) 0 TF

(Observe that if sn were Brownian motion, then sT = m4 on {T<ml

and P(m){T<m} = 1, which shows immediately that exp{-2mc( -to)1
V1 0

is the xact probability in this case.)

To avoid dealing directly with the conditional random walk governed

by P(m) , one may differentialte P(m) with respect to P (both

measures restricted to F ). the integral in (10) becomes V

T7 I

(1) (27r)1 / 2 f expf-2( -ij )(s -m )/(l-T/m)} P[(s -1J T)/(m-) 2](1-T/M) 2dP
r} 0 T I

Under P , T/m converges to /P in probability, and the joint

Iii 1/2
limiting distribution of s. - m and (s-U 1r)/m is known (e.g.

Siegmund, 1975). Hence evaluating (11) asymptotically becomes a matter

of straightforward computation.

It should be noted that although p(m) plays a useful conceptual

role, it is superfluous for the rigorous proof, because one can

differentiate P(m) directly with respect to P (both restricted
0 1

to F ) and by pass (10).

Consider now the general case, where there is no obvious candidate

for V. . Let fn denote the density function of sn Recall that

f denotes the P density of s and 0. = 6(oi). (Hence
li'n 1A n 1

fn = f5.,' where 6(j) - 0.) For arbitrary p > 0 and n < m

(12) /dP() MP f (mo -s )ep[-Os +nO(0 I )]/f (mu)
- on .. ,n r-n 0 n.n o 0



By (4)

(13) fm(m~o) 1 f,mf M 1 ) exp[-m + m + (9)]

and for a yet to be specified 2

(14) f (mn -SU ) 0 f 2mn(m0 -s n )ex p [ - 0 2 (M o - s n +.(m-n) (82)] .

If p2 < 0 < I are chosen so that (5) holds, substitution of (13)

and (14) into (12) leads to the basic identity

(in) rO(15) P V {T<M) = exp{-mt(0 2 -0 0 )P 0 + W() - 2I'o
0

fmf (milo-S .)exp[-(o -e 2 )s ]/f (mu) }dP{T<m} )fJ 2' m - T 0T 2T Po ,m 0 11

The condition (6) can now be understood as putting m 0 -s at0 T

approximately the center of the distribution f . Since

P l{T/m - 4/V) - I and s. z Cm on {T < m) , the proper centering

is determined by p2 (m-mc/pl) m(G -;), which is equivalent to (6).
2 1 0

Let R = s -Cm . Then (15) may be rewritten
M T

P ?T<n)expfmt(e1- 02 ) + (e2-60)p + Wpe 0-0621

(16) 0

- f {exp(-(e1- 2)Rm If 2, [m(I - )-Rm I/f Pom(mi )JdP
{T<M) 12i .2 3mr o in ui

By the assumption (3)

f (mW_) (2 mo2 2 (m CO)
fo m u ) 2ino)

oM 0

9
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Since f 1Am21 is bounded (uniformly in m-T) by assumption, Lemmas I

and 2 given below imply that the integral in (16) may be replaced by

an integral over

(17) IT < mcv-!I (I+e), R < (log m)2}

plus terms converging to 0 as m . (Here c>o is arbitrary sub-

ject to r U(I+e) < I.) It follows from (3) and (6) that uniformly

on the event (17)
I 1

f 1 21MTlm()o- )-R m ff o21 (M-T) 2 P{[P 2 C(T-m;/1I )-Rm]/ 2(m-T) 2} + o(m 2

Hence the integral in (16) has the same limit as m - - as

(2w) 2aOa 2 f exp[-(O 1-0 2)Rm] )(1-T/m) 2 (lu2 (T-MC/P I) / a 2 ( m - T) 2 dP
SI R<I

Keeping in mind that P U{IM-T -U l} fI- I and using the known limiting

joint distribution of R and (T-ml/ 1 )/ml1/ 2  (e.g. Siegmund, 1975),

one may evaluate the limit of this integral as m - and hence complete

the proof of Theorem 1.

Lemma i. Let P, c > o. Then

I-
P {T> M~ - 1(0+0)} - o(m 2

Proof. Let n denote the least integer greater than m -(l+),

so { > mi- (l+)} c[s < ni /(l+c)} . Standard exponential

Chebyshev inequalities show that the probability of this event is

actually exponentially small.

10
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Lemmua2. Let u >O0. Then P Pf ,RM>(logM) 21 o(m 2A

Proof. The proof follows easily from

P m, R (log m)21 P I11 x, > (log M)2j

and standard estimates.



3. Repeated significance tests - a non-linear example.

Assume now that xl,x 2 ,... are independent N(P,1) random vari-

ables and that for given b> 0

T - inf{n: Is I > b 2 2

For m - 1,2,... let T' - min(T,m) . The stopping rule T' defines

the repeated significance test of Armitage (1975): to test H : u - 0o

against H: P 4 0 stop sampling at T' and reject H if and only

if T < m . The power function of this test is P {T < ml, for which

asymptotic approximations have been given as b m , - - and

b M -/2 . 8 (e.g. Siegmund, 1977, 1978). Peto et.al. (1976) and

Siegmund (1978) suggested a modification of this test in which there

is given a number c, 0 < c < b, and one rejects H if eitherO0

T < or T > m and isi > c > /2C m The power function of the modi-

fies test is

P {T < m} + P {T > m, is m > c m2

(18) I 1

- P418m[ > c in-} + P{T < m, < c is }

The second probability on the right hand side of (18) may be rewritten

I I
(19) f P(m){T <} m (m2 (Vo-P))m 2 duo

II _ j<_cm- I/ 2  oo

Letting c have the same asymptotic normalization as b , i.e.

c m-1/2 . Y for some 0 < y < 8 and appealing to the following

theorem gives asymptotic expressions for (19).

Theorem 2. Assume b w, m.. and b m- !/2 . > 0. For each

compact subinterval K of (0,8), uniformly for Vo E K

12



-('n){T < m) exp{- -m (B2 -i 2 )1B P-1 v(B 2 Uo)

0 1

where v(x) - 2 x-2 exp(- 2 n- I *(- x nwhere 1/x2 -1/x2

Corollary 1. Suppose m -" and bmi/ 2 = B > Y - cu 1/2
Then. 2

PT < m, Is m < cm / 2 i - amI / 2 e- 2m/2(2/7) 1 / 2 f x-lv(x)dx

in 2 -Y_1

Corollary 2. Suppose m - and bmB > Y - cm 1 /2

Then for p 4 O

P (T < m,j Ism < cm 1/21 (P[m| /2 (B-10l)) V( _I)Y -MlI(B-Y)
TuMm'' 2  v(B y-)B- e1/2

Remark. The case c - b is included in Corollary I but not

Corollary 2. This seemingly innocuous distinction provides con-

siderable insight into the asymptotic relation between the conditio-

nal probabilities (2) and the unconditional probabilities P{T < m).

An informal attempt to elucidate this relation is given at the end of

the paper.

Informal proof of Theorem 2.

Consider first the case of a fixed P0 > 0. The question of

uniformity will be considered later. For v > 0 it is easy to see

that P(m)(T < m, 5T < 01 . (~)T< m, sT > 01 , and hence with-

out loss of generality one may assume that T is defined without the

absolute value - as it is in Section I. The main idea of the proof is
1/2to approximate the curve Bt by its tangent C + nt at a suitable

value to E (0,1). With the appropriate value VI for the tangent line,

P 2(C +n)-1i , the identity (10) as modified by (11) becomes
0

P {T < m) exp[2m4(C+n-Po)]

(20) 0 2

f f (t-T/m)D -/2 exp{-2(4+n-o)[ T /Cm-iT . (BT-IT)
(T<m) 0 In j 2 mT d

13
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where 11 2 (C+n)- The point of tangency t is chosen so that
o 2

PU (T/m. to} - I. (Simple algebra gives to = (o/) , 0 =1o/2

and n - B2/2po .) A Taylor expansion yields

I I

aT - ;m - T - sT -b T2 + m{8(T/m)2 _ - nT/m}

asa-b T - 84(T-m) 2 /8u 3 m + op(1)

where m = mt

Similarly

m- (ST-)AT) 2 . 04(T-mo) 2 4o 2 m + 0 p -bTl/ 2)/mI/ 2 ] + O (1)

Hence the integrand in (20) becomes

bT1 / 2  1(1-2B226- s6 2T-too) 2

2-T/mp 2 2 4(l-T/m) 4 m(21) 0

+ O p(1) + 0P[(sT-bT)/2}/m I / 2)}

The limiting joint distribution of sT -bT1/2 and (T-m )/m1/2 may

be obtained as an application of Theorem 2 of Lai and Siegmund (1977)

or Theorem 4.3 of Woodroofe (1976a). Substituting (21) into (20) and

integrating with respect to the limiting distribution of

(ST-bT/2 ), (T-z0)/ml/2 , and T/m produces the expression given

in Theorem 2.
2-1/2 the function of (T-mo)/m1/2 in (21) which

When 8 n(2)whc

must be integrated is unbounded, and hence some care is required to

justify taking the limit inside the integral in the preceding

paragraph. However, straightforward estimates show that

P(M){T ml - P:){m _,,1/ 2 < T < m + Am 1/2

14
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where X tends to +- arbitrarily slowly with m. By replacing the

event (T < ml in (20) by the smaller event

fm0 - AM 1/2 < T < m0 /2 , s T-b1 /2 < (log M , one may make

the preceding argument precise. The details have been omitted. See

Siegmund (1978) for a similar argument spelled out in detail.

To see that the preceding argument holds uniformly in po pro-

vided u is bounded away from 0 and B (hence t is bounded

away from 0 and 1) requires a tedious review of the various steps

of the proof to see that each holds uniformly in o " Perhaps the

only non-obvious step is the classical renewal theorem, which must be

applied to the ladder height renewal process determined by the distribu-

tion of sT  (T+ inf{n: sn  01). The Fourier analytic proof, given

for example by Breiman (1968, p.218) seems well adapted to using

boundedness of higher moments of s+ to prove the required uniformity.

The details are omitted.

To prove Corollary 1, note that the theorem immediately implies

for 0 < c < Y < B
! I B2-I

- 2S2-

(22) P0{T <m, cm < IsmI < ym} 2 em 0 m/2(2/ r) 2 x-iv(x)dx

Obviously, for 0 < 6 < I

P{T <m,js mI < cm)< P 0T < 6m)+P {6m < T < mJ smI < cm}

It is easy to see that for small 6 ,

P oT < 6m) < n 0 P{isn I > bnl/2} is small compared to the right

- n'~m 81/2
hand side of (22); taking e so small that 6 - c > o and using

standard arguments one sees that P {Sm < T < m,..s < cm) is also

small compared to the right hand side of (22). This proves the

corollary when Y < B , and a similar argument to estimate

P {T < m, (l-)Bm < Isj < 8m handles the case y 8•
0 1

15



The proof of Corollary 2 is almost immediate, for when U * 0

the entire contribution to the integral in (19) comes from the

immediate neighborhood of p. c m

16



4. Discussion

It should be apparent from the preceding examples that the method

given here is valid for fairly general random walks and curved bounda-

ries. For example, it seems reasonably straightforward to consider
YI

curves c(t) - at¥  for 0 < y < L and exponential families as in

Theorem I to obtain a simultaneous generalization of Theorems I and 2.

Since the calculations are messy and the author is unaware of interest-

ing applications, this generalization has not been pursued.

In considering extensions to more complicated curves the important

requirement is that the appropriate approximating tangent line have

its point of tangency to at neither 0 nor I . Unfortunately these

boundary cases can arise for a variety of reasons. The most obvious

is that po may be a boundary case, e.g. It - c(i). However, for

normal random walk and c(t) - OtY with < y < 1, the "appropriate

tangent" is at to =0 for all u < c(|), so the method breaks

down completely.

Corollary I to Theorem 2 with y - 0 yields the known asymptotic
expression for Po{T < m) by "nconditioning" P(m){T < m). In general

0 130
this is not an effective method for obtaining approximations to the

corresponding unconditional probabilities, because the important values

of Uo in the unconditioning integral may be boundary cases, for which

the methods of this paper fail or are not particularly appropriate.

For example, for c(t) = t 1/2 and normal random walk with positive

mean y , the important values of U in the unconditioning integral

I I

P (T < ms < a) f P(m)T < ml[m2( o-)1m2d o1 ' m jio<8 1o 0

are values p B - &/m , for which the appropriate tangents are

at to I. Hence the methods of this paper do not apply directly,

although a modification can be made to work. The essential ingredient

'7



is to consider the process to be running backward in time from time m

to time 0. For the reversed process the role of m is played by & ,

which does not tend to +- , and hence the subsequent calculation is

almost trivial. And in fact for these values of P the limiting

behavior of P {m){T < m} can be inferred by almost trivial arguments

(e.g. Siegmund,1978). Thus, although the methods of this paper give

heuristic insight into the behavior of the unconditional probability

P VT < m) , they do not appear likely to replace previously developed

methods for obtaining mathematically rigorous results.

18
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